

PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space

Presenter: Jiaxin Lu

Sept. 6, 2022

3D Data vs. 2D Data

Point Cloud

- Simplest, only points, no connectivity;
- (x, y, z) coordinates, with some features (normal, curvature, etc.)
- Easy to get directly from existing devices;
- Might be the only thing you can get directly from existing devices...

Problem Setting: Learning on Point Cloud

★ A set of 3D points $M = \{P_i | i = 1, ..., n\} \subseteq \mathbb{R}^n$; for PointNet and PointNet++
★ A distance metric d; X = (M, d) is a discrete metric space;

***** Learn function *f* that take \mathcal{X} as input and produce information regarding \mathcal{X} .

Properties of Desired Network

- Tackle unordered point set;
- Permutation Invariance;

Transformation equivariance;

PointNet

Fundamental idea: approximate a general function defined on a point set by applying a symmetric function on transformed elements in the set:

$$f(\{x_1, \dots, x_n\}) = \gamma \left(\underset{i=1,\dots,n}{\mathsf{MAX}} \{h(x_i)\} \right)$$

MLP

Symmetric function: $f(x_1, x_2, ..., x_n) \equiv f(x_{\pi_1}, x_{\pi_2}, ..., x_{\pi_n}), x_i \in \mathbb{R}^d$

PointNet

Limitation of PointNet

Only global feature, no local context for each point.

symmetry function

CNN

PointNet

PointNet++

Fundamental idea: hierarchical point set feature learning.

Hierarchical Point Set Feature Learning

- Sample anchor points (sampling layer);
- Find neighboring points of each anchor points (grouping layer);
- Use PointNet as basic building block for local pattern learning (PointNet layer).

Density Adaptive PointNet Layer

- More challenge: non-uniform density in point cloud.
- Multi-scale grouping (MSG)
 - Apply grouping layers with different scales
 - Random input dropout
- Multi-resolution grouping (MRG)
 - At layer L_i , summarizing features from lower

level and process all raw points in the local region

Hierarchical Feature Propagation

Challenge: for segmentation task, we want features of all the original points.

•
$$f^{(j)}(x) = \frac{\sum w_i(x)f_i^{(j)}}{\sum w_i(x)}$$
, where $w_i(x) = \frac{1}{d(x,x_i)^p}$, $j = 1, ..., C$

Experimental Setup

- Datasets **
 - MNIST: 2D images; *
 - **9 9 9 9 9 9 9 9** ModelNet40: 3D CAD models: •
 - SHREC15: Shape in non-Euclidean metric space (non-rigid); *

Я

Ч

S б

Ь

- ScanNet: Indoor scenes; **
- Metrics •
 - Error rate / Accuracy *

On MNIST and ModelNet40

Method	Error rate (%)
Multi-layer perceptron [24]	1.60
Network in Network [13]	0.80 0.47
PointNet (vanilla) [20]	1.30
PointNet [20]	0.78
Ours	0.51

Table 1: MNIST digit classification.

Method	Input	Accuracy (%)
Subvolume [21]	vox	89.2
MVCNN [26]	img	90.1
PointNet (vanilla) [20]	pc	87.2
PointNet [20]	pc	89.2
Ours	pc	90.7
Ours (with normal)	pc	91.9

 Table 2: ModelNet40 shape classification.

On robustness to sampling density variation

On robustness to sampling density variation

On large scale point cloud analysis

- On non-Euclidean metric space
 - \diamond distance metric *d*;
 - ✤ Intrinsic features: geodesic distance, WKS, HKS, Gaussian curvature …

	Metric space	Input feature	Accuracy (%)
DeepGM [14]	-	Intrinsic features	93.03
Ours	Euclidean Euclidean Non-Euclidean	XYZ Intrinsic features Intrinsic features	60.18 94.49 96.09

✤ kNN v.s. Ball Query

		kNN (k=16)	kNN (k:	=64) radi	us (r=0.1)	radius (r=0.2)
		89.3	90.3	}	89.1	90.7
*	Farthest Point Samp	ing				
			Feature difference std. Accuracy std.		std.	
			0.021		0.0017	
•	Time and Space Con	nplexity				
	Point	Net (vanilla) 1	PointNet 1	Ours (SSG)	Ours (MSC	G) Ours (MRG)
	Model size (MB)	9.4	40	8.7	12	24
	Forward time (ms)	11.6	25.3	82.4	163.2	87.0

Conclusion and Open Issues

✤ An effective hierarchical learning network on point cloud.

- Sampling & Grouping Layer;
- Non-uniform point sampling;
- Feature propagation.
- State-of-the-art performance.

- How to sample better local regions? (VoxelNet)
- How to propagate point features? (EdgeConv, RS-CNN, etc.)

Extended Readings

- Maturana, Daniel, and Sebastian Scherer. "Voxnet: A 3d convolutional neural network for real-time object recognition." 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, 2015.
- Qi, Charles R., et al. "PointNet: Deep learning on point sets for 3d classification and segmentation."
 Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
- Wang, Yue, et al. "Dynamic graph CNN for learning on point clouds." Acm Transactions On Graphics (tog) 38.5 (2019): 1-12.
- Liu, Yongcheng, et al. "Relation-shape convolutional neural network for point cloud analysis." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.
- Zhou, Yin, and Oncel Tuzel. "Voxelnet: End-to-end learning for point cloud based 3d object detection." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.

Summary

- ✤ 3D data and point cloud
- PointNet
 - Limitation: only global feature, no local context.
- PointNet ++
 - A hierarchical design using grouping and sampling;
 - Learning on non-uniform sampling density;
 - Feature propagation.
- State-of-the-art results on point cloud processing.